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As traditional von Neumann computing systems based on CMOS technologies gains less 
performance increment and energy efficiency from device scaling, neuromorphic hardware systems that 
potentially provide the capabilities of biological perception and information processing within a compact 
and energy-efficient platform have gained great attentions [1][2]. However, the hardware development of 
neural networks in traditional VLSI circuits still falls behind from the following perspectives. First, the 
weight matrix storage by digital-analog convertors, capacitors, or floating gates, has low precision, high 
power consumption, and high area overhead. Second, the voltage-based matrix computation induces 
many design issues including voltage offset, noise generation and voltage saturation. Last but not the 
least, the architecture and connection of such neuromorphic systems are hard to scale up, limiting the size 
and function of hardware implementations [3].  

Theoretically, an idea memristor exhibits similarly as a synapse in bio-tissues [4]: it “remembers” 
the total electric flux through the device as its memristance M, which can be leveraged as the weight 
between an input voltage and an output current such as I = V / M. Such device feature potentially provides 
a complementary solution in neuromorphic design.  

However, at current stage, a large gap exists between the theoretical memristor characteristics and 
the experimental data obtained from real devices, raising severe concerns in feasibility of memristor-
based hardware design. For instance, the memristor theory expresses a continuous and stable memristance 
change. Though an arbitrary intermediate state can be obtained by carefully setting current compliance 
and period in a single metal oxide memristor, the corresponding realization at large scale, e.g., crossbar 
array, is very difficult after including intrinsic design constrains, process variations, etc. Keeping a 
memristor in its ON or OFF state (Ron or Roff), on the contrary, is much more controllable. Thus, 
memristors nowadays are utilized as “memristive switches”. Moreover, metal oxide based memristor 
behaves stochastically and hence even a single memristive device demonstrates large variations in 
performance. More specific, the static states of a single memristive switch, i.e., Ron and Roff, are not fixed, 
but have large variations with skewed distributions and heavy tails [5]. The switching mechanism of a 
memristive switch, that is, its dynamic behavior, performs as a stochastic process [6], which has been 
widely demonstrated in various materials. Previous statistical analyses on memristors were limited to the 
binary switching as data storage. It is necessary to understand and model the analog stochastic 
characteristic of memristors.  

In this work, we built a stochastic behavior model of TiO2 memristive devices based on the real 
measurement results to better facilitate the exploration of memristive switches in hardware 
implementation. The model bypasses material-related parameters while directly linking the device analog 
behavior to stochastic functions. Simulations (Figure 1 and Figure 2) show that the proposed stochastic 
device model fits well to the existing device measurement results.   
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Figure 1. The static state distributions of a memristive switch. 
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Figure 2. The time dependency of ON (a) and OFF (b) switching at different external voltages V. 

 
 
To overcome the gap between the theoretical and real characteristics of memristive devices, we 

propose a macro cell design illustrated in Figure 3, which is composed of a group of parallel connected 
memristive switches. It utilizes multiple memristors to represent an analog value by leveraging the 
stochastic behavior. Though the design sacrifices the design density, it is still more efficient than the 
CMOS implementations in floating gates or capacitors. The usage of macro cells in weight storage unit 
and stochastic neuron, the two fundamental elements of neuromorphic system, is then demonstrated. The 
macro cells can be naturally integrated into memristor crossbars that previously were proposed as weight 
storage in neuromorphic computation.  
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Figure 3. (a) A macro cell containing of 9 memristive switches on a 3x3 crossbar. (b) Partitioning a 6x6 

memristive switch crossbar to obtain a 2x2 macro cell crossbar for continuous weight storage. 
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