A Coherent Hybrid SRAM and STT-RAM L1 Cache Architecture for Shared Memory Multicores

Jianxing Wang, Yenni Tim Zhong-Liang Ong and Weng-Fai Wong School of Computing National University of Singapore

Zhenyu Sun and Hai (Helen) Li Swanson School of Engineering University of Pittsburgh

Outline

- STT-RAM Basics
 - Cell structure and advantages
 - Challenges and motivations
- Hybrid L1 Cache Architecture
 - Naïve solution
 - The MESI protocol
 - Block transfer mechanisms
- Evaluation
 - Performance and energy
 - STT-RAM endurance
- Conclusion

STT-RAM Basics

- Magnetic Tunnel Junction (MTJ)
 - Two ferromagnetic layers separated by a barrier

STT-RAM Basics (cont.)

Advantages

- Non-volatile, near zero leakage energy
- As fast as SRAM (read)
- As dense as DRAM
- Multi-level cell capability (stacking MTJs)
- CMOS-compatible
- Universal memory

Motivations of Hybrid Cache

- Expensive write operation of STT-RAM
 - High latency (10ns+)
 - High energy
 - Compensated by relaxed non-volatility [Smullen et al. 11]
 - Refresh
 - Endurance
- Intense writes in L1
 - bodytrack: L1(s) / L2 = ~29!
 - Additional synchronous operations under multi-core environment

Proposed Hybrid Cache Hierarchy

Cache Block Management

- Naïve solution
 - Based on temporal locality

- Simple but not good enough
 - > 3% IPC degradation

The MESI Coherent Protocol

- Developed by University of Illinois
 - Illinois MESI
- For each cache block
 - **M** (modified) state data dirty, exclusive copy
 - E (exclusive) state data clean, exclusive copy
 - **S** (shared) state data clean, multiple copies
 - I (invalid) state
- Common event bus
 - Local (processor) read/write
 - Remote (snoop / bus) read/write

Cache Block Management (cont.)

- Immediate transfer policy (IT)
 - Place dirty data (M state) block in SRAM
 - Place clean data (E/S state) block in STT-RAM
 - Transfer cache block when coherent state changes
 - DO NOT need extra information (built-in by MESI)

Immediate Transfer Policy (IT)

Cache Block Management (cont.)

- Delayed transfer policy (DT)
 - IT could be too aggressive
 - Coherent state "ping-pong" between M and S
 - Relax state restriction
 - Consider request history in prediction
 - Extra information required

Evaluation

- PARSEC on MARSSx86 [Patel et al.11]
 - IPC (Instruction Per Cycle)
- NVSim [Dong et al. 12]
 - Latency, area and energy numbers (32nm)
- Configuration
 - Quadcore machine with two-level cache hierarchy
 - Relaxed STT-RAM's non-volatility with a 26.5µs retention period [Sun et al. 11]
 - Various cache size combinations within the baseline area budget (64KB SRAM)

Normalized IPC (IT policy)

Normalized Energy (IT policy)

Comparison of Transfer Policies

Impact of Retention Time

- $t = C \times e^{k\Delta}$
 - Δ: Thermal barrier of MTJ, affected by planar area, thickness and temperature
 - Range from few microseconds to 10+ years
- Lower bound (DRAM-style refresh)
 - #cache blocks × (read latency + write latency) × cycle time
 - Example: ~4µs (64-byte block, 64K size, 3-/9cycle read/write latency under 3GHz clock)

Impact of Retention Time (cont.)

STT-RAM Endurance

- Lifespan programming cycles
 - SRAM and DRAM: 10^16
 - STT-RAM prediction [Tabrizi 07]: 10^15
 - STT-RAM reported [Diao et al. 07]: 10^13
 - SLC NAND flash: 10^5
- Writes in L1 cache
 - High intensity
 - Non-even distributed
 - bodytrack: ~35% writes on one cache partition
 - facesim: ~50% writes on the same cache partition, ~15% on the same block!

STT-RAM Endurance (cont.)

• facesim

	Perfect distributed	Worst Partition	Worst Block
Baseline SRAM	1,300+ years	300+ years	< 360 hrs
Baseline STT-RAM	1.3 years	0.3 years	< 22 mins
Hybrid Naïve	3.5 years	1.0 year	0.9 hr
Hybrid IT	41.2 years	6.9 years	51.6 hrs
Hybrid DT	32.9 years	7.0 years	54.3 hrs

150x lifespan increases for the worst block!

Conclusion

- Deploy STT-RAM as L1 cache
 - Expensive write (latency, energy and endurance)
- Architecture solution: hybrid cache
 - "big.LITTLE" model
- MESI-based Hybrid L1 Cache Architecture
 - Small SRAM partition + large STT-RAM partition
 - Using built-in information from coherent protocol
 - Performance maintained with less energy, and extended lifespan

THANK YOU ! Q & A