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STT-RAM Basics

- Magnetic Tunnel Junction (MTJ)
Two ferromagnetic layers separated by a barrier

Bit-Line (BL) Bit-Line (BL) Bit-Line (BL)

Word-Line Word-Line Word-Line
O— O—
(WL) (WL) 1 (WL) o

Source-Line (SL) Source-Line (SL) Source-Line (SL)
Low Resistance (Rp) High Resistance (R,p)  Equivalent circuit




STT-RAM Basics (cont.)

- Advantages
Non-volatile, near zero leakage energy
As fast as SRAM (read)
As dense as DRAM
Multi-level cell capability (stacking MTJs)
CMOS-compatible
Universal memory




Motivations of Hybrid Cache

* Expensive write operation of STT-RAM
High latency (10ns+)
High energy

Compensated by relaxed non-volatility [Smullen et al. 11]
Refresh

Endurance
* Intense writes in L1
bodytrack: L1(s) / L2 = ~29!

Additional synchronous operations under multi-core
environment [ 5 )




Proposed Hybrid Cache Hierarchy
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Cache Block Management

- Nalve solution
Based on temporal locality
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Simple but not good enough
> 3% IPC degradation




The MESI Coherent Protocol

» Developed by University of lllinois
lllinois MESI

* For each cache block
M (modified) state — data dirty, exclusive copy
E (exclusive) state — data clean, exclusive copy
S (shared) state — data clean, multiple copies
| (invalid) state

« Common event bus
Local (processor) read/write
Remote (snoop / bus) read/write




Cache Block Management (cont.)

* Immediate transfer policy (IT)
Place dirty data (M state) block in SRAM
Place clean data (E/S state) block in STT-RAM
Transfer cache block when coherent state changes
DO NOT need extra information (built-in by MESI)




Immediate Transfer Policy (IT)
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Cache Block Management (cont.)

- Delayed transfer policy (DT)

IT could be too aggressive
Coherent state “ping-pong” between M and S

Relax state restriction
Consider request history in prediction
Extra information required




Delayed Transfer Policy (DT)
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Evaluation

* PARSEC on MARSSX86 [patel et al. 11]

IPC (/nstruction Per Cycle)
* NVSim [pong et al. 12]

Latency, area and energy numbers (32nm)
» Configuration

Quadcore machine with two-level cache hierarchy

Relaxed STT-RAM’s non-volatility with a 26.5us
retention period [Sun et al. 11]

Various cache size combinations within the
baseline area budget (64KB SRAM) (13)




Normalized IPC (IT policy)
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Normalized Energy (IT policy)
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Comparison of Transfer Policies
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Impact of Retention Time

ct=C XelA
A: Thermal barrier of MTJ, affected by planar
area, thickness and temperature

Range from few microseconds to 10+ years

» Lower bound (DRAM-style refresh)

#cache blocks X (read latency + write latency) X
cycle time

Example: ~4us (64-byte block, 64K size, 3-/9-
cycle read/write latency under 3GHz clock)




Impact of Retention Time (cont.)
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STT-RAM Endurance

» Lifespan programming cycles
SRAM and DRAM: 10716
STT-RAM prediction [Tabrizi 071 : 10215
STT-RAM reported [Diao et al. 07]: 10713
SLC NAND flash: 1075

* Writes in L1 cache
High intensity
Non-even distributed

bodytrack: ~35% writes on one cache partition

facesim: ~50% writes on the same cache partition, ~15% [ 19 J
on the same block!




STT-RAM Endurance (cont.)

» facesim

Perfect Worst Worst
distributed Partition Block

Baseline
SRAM 1,300+ years 300+ years < 360 hrs
Baseline :
STT-RAM 1.3 years 0.3 years < 22 mins
Hybrid Naive 3.5 years 1.0 year 0.9 hr
Hybrid IT 41.2 years 6.9 years 51.6 hrs
Hybrid DT 32.9 years 7.0 years 94.3 hrs

(0]

150x lifespan increases for the worst block!




Conclusion

* Deploy STT-RAM as L1 cache
Expensive write (latency, energy and endurance)

- Architecture solution: hybrid cache
“big.LITTLE” model

- MESI-based Hybrid L1 Cache Architecture
Small SRAM partition + large STT-RAM partition
Using built-in information from coherent protocol

Performance maintained with less energy, and
extended lifespan
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