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Abstract—The traditional Von Neumann architecture has 
constrained the potential for applying massively parallel 
architecture to embedded high performance computing where we 
must optimize the size, weight and power of the system. Inspired 
by highly parallel biological systems, such as the human brain, 
the neuromorphic architecture offers a promising novel 
computing paradigm for compact and energy efficient platforms. 
The discovery of memristor devices provided the element we 
need with unprecedented efficiency in realizing such a computing 
architecture. There are still many challenges left to meet our goal 
of a fully functional bio-inspired computer. Here we will discuss 
our research in memristor crossbar based architecture, 
adaptation of this architecture for cogent confabulation models, 
and potential applications of the bio-inspired computer. 
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I.  INTRODUCTION 

The explosion of “big data” applications imposes severe 
challenges of processing speed and scalability on traditional 
computers. The performance of the Von Neumann machine is 
hindered by the increasing performance gap between CPU and 
memory (known as the “memory wall”), motivating the active 
research on new or alternative computing architecture. As one 
important example, bio-inspired (or neuromorphic) computing 
systems have gained considerable attention. 

Bio-inspired computing systems refer to the computing 
architectures inspired by the working mechanism of the human 
brain. The human neocortex system naturally possesses a 
massively parallel architecture with closely coupled memory 
and computing as well as unique analog domain operations [1]. 
The simple unified building blocks (i.e., neurons) follow 
integrate-and-fire mechanisms, leading to an ultra-high 
computing performance beyond 100 TOPS (Trillion 
Operations Per Second) and a power consumption of a mere 20 
Watts. By imitating such structures, neuromorphic computing 
systems are anticipated to be superior to the conventional 
computer systems in tasks such as image recognition and 
natural language understanding. As the most resource-
consuming part in neuromorphic algorithms [2], matrix 
operations are normally processed by hardware accelerators 
like CPU/GPU/FPGA [3] or VLSI circuits [4]. The 
straightforward hardware realization of neural networks, 
however, commonly consumes a large volume of memory and 
computing resources, incurring high design complexity and 
hardware cost. 

The structural similarity makes the reconfigurable array 
conceptually efficient for matrix operations [16][17][18] and 
inspired many researches on the corresponding circuit designs, 
i.e., the arrays of flash transistor [20] or DRAM capacitor [21]. 
However, the computation capacity and scalability of these 
designs are generally limited by the large cell footprint. 
Recently, the discovery of the memristor device triggered a 
revolution in neuromorphic computing system design: synaptic 
behavior is easily mimicked by the historical recording 
property of the memristor while the crossbar array structure 
offers the highest integration density in 2D/3D designs [22]. 

In this paper, we propose a novel information processing 
system that combines the flexibility of conventional 
architecture in logic-scientific computation with the efficiency 
of neuromorphic architecture for applications in the domains of 
language understanding and data analytics. By leveraging 
associative memory and inference-based information 
processing models, a bio-inspired computing architecture is 
introduced to accelerate neuromorphic computations with ultra-
low energy consumption. The proposed bio-inspired computing 
method integrates a wide spectrum of new technologies in 
device, circuit, systems, models and applications. Using the 
memristor devices [5][6] as the building blocks, we propose a 
memristor crossbar-based analog circuit design as the basic 
computing component for neuromorphic models such as 
associative memory and inference. At the system level we 
propose a heterogeneous computing architecture and memory 
hierarchy across digital and analog (neuromorphic) domains 
that facilitate seamless coordination between conventional 
pipeline and neuromorphic accelerators. We will also introduce 
a large scale application that can benefit significantly from the 
proposed hardware architecture. 

The remainder of the paper is organized as follows. Section 
II introduces the operating principles of the memristor device. 
Section III describes a circuit design based on the memristor 
crossbar arrays that realizes an approximation of matrix-vector 
multiplication computing. Section IV introduces the proposed 
heterogeneous system architecture. An application in 
autonomous large area traffic monitoring will be discussed in 
Section V. Section VI provides conclusions of the work. 

II. THE MEMRISTOR DEVICE 

The existence of the memristor was predicted in circuit 
theory about forty year ago [5]. In 2008, the physical 
realization of a memristor was firstly demonstrated by HP Lab 



through a TiO2 thin-film structure [6]. Afterwards, many 
memristive materials and devices have been rediscovered. 
Intrinsically, a memristor behaves similarly to a synapse: it can 
“remember” the total electric charge/flux ever to flow through 
it [8][9]. Moreover, memristor-based memories can achieve a 
very high integration density of 100-Gbits/cm2, a few times 
higher than flash memory technologies [7]. These unique 
properties make it a promising device for massively-parallel, 
large-scale neuromorphic systems [10][11]. 

 

 

 

 

Fig. 1.  TiO2 memristor: (a) structure; (b) equivalent circuit. 

Fig. 1 illustrates the conceptual view of the TiO2 thin-film 
memristor and the corresponding variable resistor model, 
which is equivalent to two serially-connected resistors. Here, 
RL and RH respectively denote the low resistance state (LRS) 
and the high resistance state (HRS). The overall memristance 
can be expressed as: 

                       LH RpRppM  )1()(                     (1) 

where p (0p1) is the relative doping front position, which is 
the ratio of doping front position over the total thickness of the 
TiO2 thin-film. The velocity of doping front movement v(t), 
driven by the voltage applied across the memristor V(t), can be 
expressed as: 
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where v is the equivalent mobility of dopants, h is the total 
thickness of the thin film, and M(p) is the total memristance 
when the relative doping front position is p. In general, a 
certain energy (or threshold voltage) is required to enable the 
state change in a memristive device [12]. When the electrical 
excitation through a memristor is greater than the threshold 
voltage, i.e., V(t)>Vth, the memristance changes (in training). 
Otherwise, a memristor behaves like a resistor. 

III. COMPUTING WITH MEMRISTOR CROSSBAR CIRCUITS 

Crossbar array illustrated in Fig. 2 is a typical structure of 
memristor-based memories. It employs a memristor device at 
each intersection of horizontal and vertical metal wires without 
any selectors [15]. The memristor crossbar array is naturally 
attractive for implementation of connection matrix in neural 
networks for it can provide a large number of signal 
connections within a small footprint and conduct the weighted 
combination of input signals [13][14].  

As shown in Fig. 2, the N-by-M memristor crossbar array is 
a basic building block to achieve matrix-vector multiplication 
approximation computation functionality. A set of input 
voltages VI୘ ൌ ሼviଵ, viଶ,⋯ , vi୒ሽ are applied on each of the N 
word-lines (WLs) of the array, and the current is collected 
through each of the M bit-lines (BLs) by measuring the voltage 
across a sensing resistor. The same sensing resistors are used 
on all the BLs with resistance rs, or conductance gs = 1/rs. The 

output voltage vector is: VO୘ ൌ ሼvoଵ, voଶ,⋯ , vo୑ሽ. The 
memristor sitting on the connection between WLj and BLi has a 
memristance of mi,j. The corresponding conductance is gi,j = 
1/mi,j . Then the relation between the input and output voltages 
can be approximated by: 

                                VO ≅ C ൈ VI                                (3) 

 

 

 

 

 

 

 

 

 

Fig. 2. A memristor crossbar array. 

Here, C is an M-by-N matrix that can be represented by the 
memristors and the sensing (load) resistors as: 

     ۱ ൌ ۲ ൈ ۵ ൌ ݀݅ܽ݃ሺ݀ଵ,⋯ , ݀ெሻ ൈ ൦

݃ଵ,ଵ
݃ଶ,ଵ

⋯
݃ଵ,ே
݃ଶ,ே

⋮ ⋱ ⋮
݃ெ,ଵ ⋯ ݃ெ,ே

൪     (4) 

where D is a diagonal matrix with diagonal elements of: 

           ݀௜ ൌ 1/ሺ݃௦ ൅ ∑ ݃௜,௞ே
௞ୀଵ ሻ, i = 1, 2, …, M.                    (5) 

Eq. (3) indicates that a trained memristor crossbar array can 
be used to construct the connection matrix C, and transfer the 
input vector VI to the output vector VO. 

 

 

 

 

 

 

 

 

 

Fig. 3. Matrix-vector multiplication approximation design. 

Given a general matrix A with both positive and negative 
elements, we can split the positive and negative elements of A 
into two matrixes A+ and A– as: 

   ܽ௜,௝
ା ൌ ൜

ܽ௜,௝, ݂݅	ܽ௜,௝ ൐ 0
				0, ݂݅	ܽ௜,௝ ൑ 0, and  ܽ௜,௝

ି ൌ ൜
0,										݂݅	ܽ௜,௝ ൐ 0
െܽ௜,௝, ݂݅	ܽ௜,௝ ൑ 0   (6) 

As such, a general matrix-vector multiplication 
approximation becomes: 



۽܄                         ൌ ۯ ∙ ۷܄ ൌ ାۯ ∙ ۷܄ െ ିۯ ∙  (7)                  ۷܄

Here, the two matrices A+ and A– can be mapped to two 
memristor crossbar arrays M1 and M2 in a scaled version ۯ෡ା 
and ۯ෡ି, respectively. Fig. 3 shows the circuit diagram. This 
memristor crossbar-based design has been used to realize 
associative memory model training and recall operations. 
Details of the implementations, algorithms and results can be 
found in [16][17][18]. 

IV. HETEROGENEOUS DIGITAL-NEUROMORPHIC SYSTEM 

We named the dual memristor crossbar based design the 
Neuromorphic Computing Accelerator (NCA). The NCA is 
much faster and more energy efficient than conventional 
computing architectures such as CPU (10~20 GFLOPS/W) and 
GPGPU (20~30 GFLOPS/W). The major cause of the 
operational latency of an NCA comes from the interconnects of 
crossbar arrays and peripheral circuits. For instance, to 
complete one iteration in an associative memory recall 
operation for a 256-entry vector, the computation latency of an 
NCA should not exceed 100ns even if we conservatively 
assume the delay of a summing amplifier is 50ns (including 
setup and computation). As a comparison, the delay of the 
Boolean mapping is 750ns by assuming using 256 4-bit 
multipliers with 2ns latency and 256 4-bit CLA adders with 1ns 
latency. Fig. 4 shows the estimated power efficiency of 
memristor-based NCA at 65nm technology node. The NCA 
design with a small crossbar array, i.e., 16×16, already obtains 
1,200 GFLOPS/W (billion floating point operations per second 
per watt). Increasing the crossbar size to 256×256 results in 
much higher computation parallelism, and further boosts the 
power efficiency close to 2,000 GFLOPS/W.  

 

 

 

 

 

Fig. 4. Estimated power efficiency of the NCA. 

 

 

 

 

 

 

 

Fig. 5. Conceptual diagram of a digital-neuromorphic system. 

Fig. 5 shows the conceptual design of the proposed 
heterogeneous system with both conventional pipeline and 
crossbar-based NCAs. The control signals and data 
communications between the NCAs are through the arbiters. 
The data transferring could be in either digital and/or analog 
forms, though the analog one offers the maximum 
performance. The conversion between analog and digital 

formats is constrained at the interface between the conventional 
pipeline and the NCA array. 

V. AN APPLICATION OF NEUROMORPHIC METHODS FOR 

AUTONOMOUS LARGE AREA TRAFFIC MONITORING 

In this section, we introduce recent work applying 
neuromorphic computing models and algorithms in an 
autonomous anomaly recognition and detection (AnRAD) 
framework. The proposed framework is based on cogent 
confabulation [19], which is a computation model that mimics 
human information processing. The model has successfully 
been applied in sentence completion and document image 
recognition [23]. In this framework, the large area is first 
partitioned into smaller zones (as shown in Fig. 6) that can be 
independently processed. Then, a knowledge base (KB) is built 
for each zone by feeding traffic records into properly modeled 
knowledge networks. When new traffic information is 
received, anomaly scores will be calculated by means of 
likelihood-ratio test for the observed events. Events with high 
anomaly scores will be marked as potential anomalies and 
alarms will be sent to the human observer. 

 

 

 

 

 

 

 

 

Fig. 6. Operational overview of the AnRAD framework. 

The confabulation model represents the observation using a 
set of features. These features construct the basic dimensions 
that describe the world of applications, e.g. vehicle speed and 
coordinates. Different observed attributes of a feature are 
referred to as symbols. The set of symbols used to describe the 
same feature forms a lexicon and the symbols in a lexicon are 
exclusive to each other. Knowledge links (KL) are established 
among lexicons. They are directed edges from the source 
lexicons to target lexicons. Each knowledge link is associated 
with a matrix. The ijth entry of the matrix gives the conditional 
probability log	ൣ  ௜ in the sourceݏ ௝൯൧ between the symbolsݐ௜หݏ൫݌
lexicon and ݐ௝ in the target lexicon. The knowledge matrix is 
constructed during training by extracting and associating 
features from the inputs. 

The excitation of a symbol t in lexicon l is calculated by 
summing up all incoming knowledge links: 

       ݈݁ሺݐሻ ൌ 	∑ ሺ∑ ሻݏሺܫ ln ቀ
௣ሺ௦|௧ሻ

௣బ
ቁ ൅ ሻ௦∈ௌೖ௞∈ி೗ܤ        (1) 

where Fl denotes the set of lexicons that have connections to l, 
and Sk is a set that consists the collections of symbols in 
lexicon k; I(s) is the firing strength of source symbol s, and it is 
set to 1 if s is observed without ambiguity; p0 is the minimum 
probability that is considered informative. Parameter B is a 



constant called band gap, it is 0 if none of the active source 
symbols in Sk has knowledge links going into t. The band gap 
ensures that symbols with more KLs receive higher excitation 
over those with fewer KLs. 

Fig. 7 shows the task graph and data flow for implementing 
cogent confabulation on the proposed heterogeneous hardware 
platform. The computation model consists of two types of 
operations; matrix-vector multiplication (MVM) and integrate-
and-firing (IF) operation. Let vectors R and E denote the input 
and output of MVM with dimensions M and N respectively, 
then E = KL*R, where KL is an M×N matrix. Each feature 
extraction engine associates with an MVM. Each knowledge 
link also accompanies an MVM. Its input is the vector of 
source lexicon’s firing strength and its output is the excitation 
coming from this knowledge link. Each IF operator 
corresponds to a lexicon in the inference layer. It has N inputs 
Ei, 1iN, and one output R, all of which are N dimensional 
vectors, where N is the number of neurons in that lexicon. Each 
input is a vector of excitations from a knowledge link. The 
output vector R gives the firing strength of neurons in the 
lexicon. The IF operator first calculates the excitation level of 
lexicon by adding all input vectors, ܧ ൌ ∑ ௜ܧ

ே
௜ୀଵ . Then it 

suppresses the least excited neurons by clearing the smallest 
entries in E. Finally it normalizes all non-zero entries in E and 
outputs the result. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Task graph and data flow of implementing the cogent confabulation 
model on the heterogeneous system. 

VI. CONCLUSIONS 

We have proposed a bio-inspired computing architecture 
that leverages associative memory and inference-based 
information processing models to accelerate neuromorphic 
computations with ultra-low energy consumption. Using the 
memristor devices as the building blocks, we proposed a 
memristor crossbar-based analog circuit design as the basic 
computing component for neuromorphic models such as 
associative memory and inference. At the system level, a 
heterogeneous computing architecture and memory hierarchy is 
introduced for facilitating seamless coordination between 
conventional pipeline and neuromorphic accelerators.  
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